
Journal of Computational Physics 228 (2009) 7007–7024
Contents lists available at ScienceDirect

Journal of Computational Physics

journal homepage: www.elsevier .com/locate / jcp
Newton-conjugate-gradient methods for solitary wave computations

Jianke Yang
Department of Mathematics and Statistics, University of Vermont, 16 Colchester Avenue, Burlington, VT 05401, USA
a r t i c l e i n f o

Article history:
Received 10 February 2009
Received in revised form 9 June 2009
Accepted 15 June 2009
Available online 23 June 2009

MSC:
35Qxx
35Q51
65Nxx

Keywords:
Solitary waves
Newton’s method
Conjugate-gradient methods
0021-9991/$ - see front matter � 2009 Elsevier Inc
doi:10.1016/j.jcp.2009.06.012

E-mail address: jyang@cems.uvm.edu
a b s t r a c t

In this paper, the Newton-conjugate-gradient methods are developed for solitary wave
computations. These methods are based on Newton iterations, coupled with conjugate-
gradient iterations to solve the resulting linear Newton-correction equation. When the
linearization operator is self-adjoint, the preconditioned conjugate-gradient method is pro-
posed to solve this linear equation. If the linearization operator is non-self-adjoint, the pre-
conditioned biconjugate-gradient method is proposed to solve the linear equation. The
resulting methods are applied to compute both the ground states and excited states in a
large number of physical systems such as the two-dimensional NLS equations with and
without periodic potentials, the fifth-order KdV equation, and the fifth-order KP equation.
Numerical results show that these proposed methods are faster than the other leading
numerical methods, often by orders of magnitude. In addition, these methods are very
robust and always converge in all the examples being tested. Furthermore, they are very
easy to implement. It is also shown that the nonlinear conjugate gradient methods are
not robust and inferior to the proposed methods.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

In studies of nonlinear wave equations in an unbounded domain, solitary waves play an important role in the solution
dynamics. Indeed, an initial localized condition often evolves into a number of solitary waves and energy radiation at large
times, provided that the solitary waves are stable. For integrable equations and some special non-integrable equations, sol-
itary waves can be obtained analytically. But for most non-integrable systems, these waves defy analytical expressions and
have to be computed numerically. So far, a number of numerical methods have been developed. Examples include the New-
ton’s method [1,2], the shooting method [3], the Petviashvili-type methods [4–6], the accelerated imaginary time evolution
methods [7,8], the squared-operator iteration methods [9], etc. The Newton’s method is a classical iteration method. In this
method, the solution is updated by solving a linear inhomogeneous operator equation, where the linear operator and the
inhomogeneous term are the Jacobian (i.e. the linearization operator) and residue of the nonlinear wave equation, respec-
tively. This linear operator equation is solved by turning it into a matrix equation through discretization, and then applying
the LU or QR factorization technique [1,2]. The Newton’s method has been used widely in the nonlinear wave community.
However, the key step of this method, which is to solve the resulting matrix equation, can become very difficult when the
matrix size is very large and not tri-diagonal (such as in two and higher dimensions). In addition, this method can encounter
other difficulties in certain situations as well [10]. The shooting method is another familiar method with a long history. This
method is very efficient and accurate. In addition, it can be used to compute embedded solitons for which other iterative
methods generally fail [11]. But unfortunately this method works only for one-dimensional problems, or higher-dimensional
problems which can be reduced to one-dimensional problems (through symmetry reduction). The Petviashvili method was
. All rights reserved.

http://dx.doi.org/10.1016/j.jcp.2009.06.012
mailto:jyang@cems.uvm.edu
http://www.sciencedirect.com/science/journal/00219991
http://www.elsevier.com/locate/jcp

7008 J. Yang / Journal of Computational Physics 228 (2009) 7007–7024
first proposed in the 1970s [4] and later generalized in [5,6]. It is based on the fixed-point iteration idea, but with a key
improvement which is to introduce a stabilizing factor. This method became popular in recent years due to its easy imple-
mentation in arbitrary spatial dimensions as well as fast convergence in many situations. However, it only converges to the
ground states of nonlinear wave equations, and would diverge for excited states [6,12]. The imaginary time evolution meth-
od is also a familiar method, especially in the physics community (see [13] for instance). But its original version is very slow,
and its accelerated versions were developed only recently [7,8]. These methods are based on the idea of turning the station-
ary solitary wave computation problem into a time evolution problem of diffusion type, and normalize the solution by its
power or amplitude at each evolution step. One important component of these methods is to introduce an acceleration oper-
ator to the time evolution equation, which would improve the convergence speed dramatically. These methods are also very
easy to implement in arbitrary spatial dimensions, and their convergence is either faster than or competitive with the Pet-
viashvili-type methods [8]. However, these methods generally can only converge to the ground states just like the Petviash-
vili-type methods [8]. In order to compute excited states, the squared-operator iteration methods were developed in [9].
These methods are based on the idea of time-evolving a ‘‘squared” operator equation (the power or amplitude normalization
is optional). Evolution of this squared equation guarantees that these methods can converge to any solitary wave, including
excited states. The acceleration operator is built inside the squared equation to improve convergence speeds. When another
mode elimination technique is incorporated into these methods [14], the resulting method (called the modified squared-
operator method in [9]) converges even faster. These squared-operator-type methods are also easy to implement for general
nonlinear wave equations in arbitrary spatial dimensions, and they deliver satisfactory performances in many situations [9].
But there are situations where all the above methods can be quite slow, especially when the wave’s propagation constant
gets near the edge of the continuous spectrum so that the wave gets less localized (see Examples 3.4 and 3.5 later in the text).
Thus even faster numerical methods are still called upon.

On a separate development, the conjugate-gradient method was developed in the early 1950s and has become the most
prominent iterative method for solving large systems of linear equations nowadays [15–18]. Viewing the linear equation as a
minimization problem of a quadratic form, this method uses conjugate directions instead of the local gradient for going
downhill. The conjugate-gradient method has a number of important properties. One property is that for symmetric posi-
tive-definite matrices, this method gives the exact solution within n steps, where n is the size of the matrix [16–18]. Another
property is that for symmetric positive-definite matrices, the matrix-weighted error decreases monotonically with each iter-
ation [16,17]. The third property is that when the matrix size is large, this method often gives the solution to the required
accuracy in much less than n steps, especially when a suitable preconditioning matrix is introduced [16,17]. The conjugate-
gradient method was originally developed for linear equations with symmetric positive-definite matrices, but some practical
applications show that this method can also solve linear equations with symmetric indefinite matrices (unless there is a
breakdown due to division by zero during iterations which rarely occurs) [19]. Generalizations of the conjugate-gradient
method to symmetric indefinite matrices, non-symmetric matrices and nonlinear systems have also been developed [20–
25]. At the moment, no work has appeared in the literature to apply the conjugate-gradient method to solitary wave com-
putations. It is not clear yet whether this method can be applied to solitary waves. If so, what scheme is the most efficient for
this application? In addition, would this method perform better than the other leading numerical methods for solitary waves
as described above?

In this paper, we apply the conjugate-gradient methods to the computation of general solitary waves (both the ground
state and excited states) in nonlinear wave equations. The guiding principles in our algorithm design are fast convergence
and easy implementation, which are equally weighed. We first linearize the solitary wave equation around an iterated solu-
tion and update the solution by solving a linear inhomogeneous operator equation, which resembles the idea of the Newton’s
method. Then, instead of solving this linear equation by direct methods as in the traditional Newton’s method, we use the
conjugate-gradient-type methods to solve it. If the linearization operator is self-adjoint, we use the preconditioned conju-
gate-gradient method to solve this linear equation. This method will be called the Newton-CG method in this paper. If
the linearization operator is non-self-adjoint, we use the preconditioned biconjugate-gradient method to solve this linear
equation. This method will be called the Newton-BCG method in this paper. We show that both methods converge for
the ground state as well as the excited states of a wave system. In addition, they are very robust and converge in all our
numerical testings with various physical wave systems and wide ranges of initial conditions (as long as the initial condition
is reasonably close to the exact solution). No breakdown of these methods is ever observed (even though it is theoretically
possible). The performance of these methods is demonstrated on a number of physical models such as the two-dimensional
nonlinear Schrödinger (NLS) equations with and without periodic potentials, the fifth-order Kortewegde Vries (KdV) equa-
tion, and the fifth-order KadomtsevPetviashvili (KP) equation. They are found to converge much faster than the other leading
numerical methods, often by orders of magnitude. In addition, these methods are very easy to implement regardless of the
number of dimensions (a sample MATLAB code of the Newton-CG method will be displayed in Appendix A). Furthermore, we
show that these Newton-CG/BCG methods, which are based on conjugate gradient iterations on a linear equation, are much
better than the nonlinear conjugate-gradient methods which are sensitive to initial conditions. We expect that these pro-
posed Newton-CG/BCG methods will replace the existing numerical methods and become the premier methods for comput-
ing both the ground-state and excited-state solitary waves in the days to come.

We would like to make a few remarks to put our results in a broader context. The combination of Newton-type methods
(for solving nonlinear equations) and Krylov subspace methods (for solving the resulting linear Newton-correction equa-
tions) is a well known technique. In the literature, these methods are often referred to as the Newton–Krylov methods

J. Yang / Journal of Computational Physics 228 (2009) 7007–7024 7009
(see [26,27] for instance). The Newton-CG and Newton-BCG methods proposed in this paper are two particular cases of the
Newton–Krylov methods. Our own contributions in this paper are two-fold. One is to demonstrate that, for a wide range of
solitary wave computations, one can use the simplest Krylov subspace methods, namely the conjugate-gradient method and
the biconjugate-gradient method, even though the linear operator in the Newton-correction equation is generally indefinite
and sometimes also non-symmetric. This message was not well recognized before. In the pursuit of algorithmic simplicity,
our Newton-CG/BCG methods are the simplest (and probably also the most effective) Newton–Krylov methods for solitary
wave computations. The other contribution of this paper is to demonstrate that these Newton-CG/BCG methods are more
efficient than practically all the other leading numerical methods for solitary waves, often by a very wide margin. Thus these
proposed methods represent a big step forward in the methodology for computing solitary waves. Given the ongoing interest
for seeking solitary waves in various physical disciplines (such as nonlinear optics, Bose—Einstein condensates and water
waves), these methods should prove very useful for those areas. Another remark we would like to make is that in the com-
putations of the Helmholtz equation with a variable refraction index, the linear operator involved is also indefinite and non-
symmetric, similar to the situation in this paper (see [28] and the references therein). Thus our results may be suggestive to
the computations in that community as well.
2. Basic setup of the methods

We consider solitary waves in a general real-valued nonlinear wave system in arbitrary spatial dimensions, which can be
written in the following form:
L0uðxÞ ¼ 0: ð2:1Þ
Here x is a vector spatial variable, uðxÞ is a real-valued vector solitary wave solution admitted by Eq. (2.1), and u! 0 as
jxj ! 1. For example, in the nonlinear Schödinger equation
iUt þ Uxx þ jUj2U ¼ 0;
if one looks for solitary waves Uðx; tÞ ¼ eiltuðxÞ, where uðxÞ is a real and localized function and l is the propagation constant,
then the equation for uðxÞ is
uxx � luþ u3 ¼ 0;
which is a special case of Eq. (2.1). Note that for complex-valued solitary waves, the equation can be rewritten in the above
form with u containing the real and imaginary parts of the complex solution. In the above formulation, the propagation con-
stant of the solitary wave is lumped into the operator L0.

Our goal is to solve solitary waves in Eq. (2.1) by iteration methods. Suppose we have an approximate solution unðxÞ
which is close to the exact solution u(x). To obtain the next iteration solution unþ1ðxÞ, we proceed as follows. First, we ex-
press the exact solution u(x) as
uðxÞ ¼ unðxÞ þ enðxÞ; ð2:2Þ
where enðxÞ � 1 is the error term. Then we substitute this expression into Eq. (2.1) and expand it around unðxÞ, which gives
L0un þ L1nen ¼ Oðe2
nÞ: ð2:3Þ
Here L1n is the linearization operator L1 of the solitary wave Eq. (2.1) evaluated at the approximate solution unðxÞ. If we ne-
glect the higher order term on the right hand side of Eq. (2.3), the remaining equation becomes a linear inhomogeneous
equation for the error en. This suggests that we update the approximate solution as
unþ1ðxÞ ¼ unðxÞ þ DunðxÞ; ð2:4Þ
where the updated amount Dun is computed from the linear inhomogeneous equation for en, which is rearranged as
L1nDun ¼ �L0un: ð2:5Þ
We must point out that this part of the scheme is identical to that in the Newton’s method [1,2]. As such, if the linear New-
ton-correction Eq. (2.5) is solved exactly (or to accuracy much higher than the size of Dun), then the iterations (2.4) will con-
verge to the exact solution uðxÞ quadratically. These nonlinear Newton iterations (2.4) form the outer iterations of our
methods.

Our methods deviate from the Newton’s method on how to solve the linear operator Eq. (2.5). In the Newton’s method, Eq.
(2.5) is solved by discretizing it into a matrix equation and then solved by direct methods such as LU or QR factorization [1,2].
Here we will use conjugate-gradient iterations to solve it. These linear conjugate-gradient iterations form the inner iterations
of our methods. Thus our methods are loop-within-loop operations, where each Newton’s iteration involves many conju-
gate-gradient iterations. But since both the Newton’s iterations [for the nonlinear Eq. (2.1)] and conjugate-gradient iterations
[for the linear Newton-correction Eq. (2.5)] converge very fast, the total number of conjugate-gradient iterations across all
Newton’s iterations is actually quite small, as our many examples will show later in this paper. An important feature of our
setup above is that, the conjugate-gradient methods are applied to a linear Eq. (2.5). This contrasts the nonlinear conjugate-

7010 J. Yang / Journal of Computational Physics 228 (2009) 7007–7024
gradient methods which have been developed in the literature for nonlinear optimization problems [17,25]. In the spirit of
those methods, one would apply a generalized conjugate-gradient method directly to the nonlinear Eq. (2.1). We will show
that our scheme above with linear conjugate–gradient methods is much more robust than the nonlinear conjugate-gradient
methods, thus is the preferred way of applying conjugate-gradient ideas to solitary wave computations.

Detailed applications of the conjugate-gradient ideas for solving the linear Eq. (2.5) depend on whether the linearization
operator L1 is self-adjoint or not. These two cases will be treated separately in the following sections.

3. The preconditioned conjugate-gradient method for self-adjoint linearization operators L1

In conservative wave systems, the linearization operator L1 in Eq. (2.5) is often self-adjoint. We consider this case in this
section. The counterpart of this case in matrix equations is that the matrix is symmetric. For matrix equations, if the matrix is
symmetric and positive-definite, the most efficient method is the preconditioned conjugate-gradient method, which has
been described in numerous prior publications (see [16,17] for example). However, in solitary wave computations, the linear
operator L1 is always indefinite, which corresponds to indefinite matrices in matrix equations. For symmetric indefinite
matrices, the preconditioned conjugate-gradient method has a theoretical obstacle, which is that this method may break
down due to division by zero during iterations. This ‘‘dark cloud” has prompted researchers to develop extended (more
expensive) conjugate-gradient methods such as MINRES and SYMMLQ [20] in order to overcome this difficulty. Undeterred
by this ‘‘dark cloud”, we went ahead and applied the preconditioned conjugate-gradient method to Eq. (2.5) for a large num-
ber of nonlinear wave equations and various initial conditions. We found that, alas, this method always converged, and
breakdown never occurred. In addition, its convergence was often so fast that it surprised us. Our later literature search
found that, in Ref. [29], the author raised the question of how serious this potential breakdown of the conjugate-gradient
method was for practical applications. In Ref. [19], the authors mentioned that the preconditioned conjugate-gradient meth-
od was often applied to indefinite symmetric matrices in driven microwave problems, and the breakdown rarely occurred.
Our experience echoes that in [19], and shows that the breakdown of the preconditioned conjugate-gradient method does
not constitute a serious concern in solitary wave computations. This is the basis on which we propose to use the precondi-
tioned conjugate gradient method to solve Eq. (2.5).

Now we describe the preconditioned conjugate-gradient method as applied to the linear operator Eq. (2.5). To simplify
notations, we drop the subscripts ‘n’ in Eq. (2.5). In addition, we always take the initial guess Duð0Þ to be zero for simplicity.
Then the preconditioned conjugate-gradient method for the linear Newton-correction Eq. (2.5) is
Duð0Þ ¼ 0;

Rð0Þ ¼ �L0u;

Dð0Þ ¼M�1Rð0Þ;

aðiÞ ¼ hR
ðiÞ;M�1RðiÞi
hDðiÞ; L1DðiÞi

;

Duðiþ1Þ ¼ DuðiÞ þ aðiÞDðiÞ;

Rðiþ1Þ ¼ RðiÞ � aðiÞL1DðiÞ;

bðiþ1Þ ¼ hR
ðiþ1Þ;M�1Rðiþ1Þi
hRðiÞ;M�1RðiÞi

;

Dðiþ1Þ ¼M�1Rðiþ1Þ þ bðiþ1ÞDðiÞ:
Here i ¼ 0;1;2; . . . is the index of conjugate-gradient (CG) iterations, the inner product is the standard one in the square-inte-
grable functional space:
hF1;F2i ¼
Z 1

�1
Fy1 � F2 dx;
the superscript ‘y’ represents the Hermitian of a vector, and the operator M is the pre-conditioning operator which is required
to be self-adjoint and positive-definite. This pre-conditioning operator is analogous to the acceleration operator in [9], and its
role is to accelerate the convergence of the above conjugate gradient iterations. The operator M should be chosen so that it is
easily invertible. In practise, it is often chosen to be the linear differential part of the operator L0 [9] (similar choice has also
been taken in other situations, see [1,30]). These CG iterations are embedded inside the Newton iterations (2.4), and the
resulting method will be called the Newton-CG method in this paper.

For solitary waves, the linearization operator L1 generally has both positive and negative eigenvalues, as well as the zero
eigenvalue. For the ground state, L1 generally has one eigenvalue whose sign is opposite of all the others; for an excited state,
L1 generally has two or more eigenvalues whose signs are opposite of all the others. Because of this, the CG iterations in the
above Newton-CG method may break down since the denominator in the above aðiÞ formula may vanish. But as we have said
above, our extensive testings of this method on various solitary wave equations have never encountered this breakdown
(some selective examples will be shown later in this section). Even if this breakdown does occur, it can be fixed by changing
the initial guess function u0ðxÞ.

J. Yang / Journal of Computational Physics 228 (2009) 7007–7024 7011
Regarding the zero eigenvalue of the linearization operator L1 (which exists in most solitary wave problems), it makes the
solution to the linear Eq. (2.5) not unique, since its eigenfunctions can be added to a solution of (2.5) which remains a solu-
tion. If these eigenfunctions are induced by the invariances of the solitary waves (such as uxj

when the solution u(x) is invari-
ant with respect to a position shift in xj), this non-uniqueness obviously is not a concern as it only leads to another solitary
wave with a shifted free parameter. This is analogous to other iteration methods [8,9,12]. If the reader wishes to eliminate
this non-uniqueness, there are simple techniques to do so. For instance, if the reader wants iterations to converge to a sym-
metric soliton with a peak at x ¼ 0, he can simply take the initial guess u0ðxÞ to be symmetric in x. This way, the initial error
function e0ðxÞ does not contain the position-shifting eigenmode ux, hence the peak will remain at x ¼ 0, and no shifting will
occur. What is surprising is that even if the kernel of L1 contains eigenfunctions which are not induced by invariances of the
solitary waves, the Newton-CG method would still converge. This contrasts the other iteration methods (such as the Petvi-
ashvili method, the accelerated imaginary time evolution method, and the modified squared-operator method) which would
not converge in such situations [8,9,12]. An example will be shown at the end of this section (Example 3.6). This surprising
behavior of the Newton-CG method can be understood by making an analogy to the Newton’s method for solving the alge-
braic equation
f ðxÞ ¼ ðx� aÞ2 ¼ 0; ð3:1Þ
whose root x ¼ a is multi-fold. The Newton-correction equation for it is
f 0ðxnÞDxn ¼ �f ðxnÞ: ð3:2Þ
At the root x ¼ a; f 0ðaÞ ¼ 0, hence the kernel of f 0ðaÞ is non-empty, which resembles the non-empty kernel of L1 above.
However, the Newton’s method for this algebraic Eq. (3.1) clearly still converges (even though the convergence speed
drops from quadratic to linear). The reason is that when xn gets close to the root a, even though f 0ðxnÞ becomes small,
the right hand side f ðxnÞ in the correction Eq. (3.2) becomes even smaller. Thus this correction equation is actually not
singular, hence Newton’s iterations still converge. In the same spirit, when the kernel of L1 is non-empty, the Newton-
CG method also converges. This convergence under non-empty kernels of L1 is one of the many advantages of the New-
ton-CG method over its peers. The CG iterations above are terminated when the approximate solution DuðiÞn to Eq. (2.5) has
reached certain accuracy. The error of this solution can be measured by the function RðiÞ in the CG iterations, which is the
residue of the linear Eq. (2.5), i.e.
RðiÞ ¼ �L0un � L1nDuðiÞn :
This error can be measured more conveniently by the M�1 weighted 2-norm of RðiÞ,
kRðiÞkM � hR
ðiÞ;M�1RðiÞi1=2

;

which appears in the CG iterations. The accuracy with which the linear Newton-correction Eq. (2.5) is solved is an important
parameter in the Newton-CG method. Remember from Eq. (2.4) that the approximate soliton solution unþ1 is updated by the
formula un þ Dun. If the accuracy of un (compared to the exact soliton solution u) is poor, then requiring too much accuracy
for solving Dun from the linear Eq. (2.5) is a waste of effort, because it does not lead to higher accuracy in the approximate
solution unþ1 (this phenomenon is called oversolving). However, when the approximate solution un gets very close to the
exact soliton solution u, higher accuracy would be necessary for solving Dun from Eq. (2.5) so that the rapid convergence
of the Newton’s method can be sustained. Thus an effective strategy for minimizing oversolving is to use the accuracy of
the approximate solution un to determine adaptively the accuracy with which the linear Newton-correction Eq. (2.5) is solved
[26]. The accuracy of un can be measured by
kL0unkM ¼ hL0un;M
�1L0uni1=2

;

which is the M�1 weighted 2-norm of the residue L0un of the nonlinear wave Eq. (2.1). Then a sensible stopping criterion for
the CG iterations in solving the linear Eq. (2.5) is that the error of DuðiÞn is below a certain fraction of the error of the solution
un itself. In this spirit, we take the stopping criterion of the CG iterations to be
kRðiÞkM < �cgkL0unkM: ð3:3Þ
Here �cg is a small positive error tolerance parameter for CG iterations. Notice that the residue L0un is the inhomogeneous
term of the linear Newton-correction Eq. (2.5). Also notice that due to our choice of the zero initial condition for CG itera-
tions, Rð0Þ ¼ �L0un. Thus the stopping criterion (3.3) for CG iterations is simply
kRðiÞkM < �cgkRð0ÞkM: ð3:4Þ
Regarding the choice of the error tolerance parameter �cg , if it is set too small, this leads to oversolving which is ineffective.
On the other hand, if �cg is set too large, which means that the linear Eq. (2.5) is solved too inaccurately, then the Newton
iterations (2.4) may not converge at all. Thus the optimal �cg should be neither too small nor too large. Our numerical testings
show that the optimal �cg is generally in the range between 10�1 and 10�3. In all numerical examples in this paper, we set
�cg ¼ 10�2. At this value of �cg , if the solution’s accuracy is set at 10�10, then the number of Newton’s iterations in the New-
ton-CG method ranges from 5 to 8 in all our numerical examples.

7012 J. Yang / Journal of Computational Physics 228 (2009) 7007–7024
In the remainder of this section, we apply this Newton-CG method to various examples of solitary wave computations,
and demonstrate its performances. We also compare its performances to those of the other leading iteration methods which
have been developed in the literature. The leading methods for the ground-state solitons are the accelerated imaginary time
evolution method with amplitude normalization (AITEM) [8] and the Petviashvili method [4]. The leading method for ex-
cited-state solitons is the modified squared operator method (MSOM) [9]. In all our performance illustrations, the error of
the numerical solution un is measured as jL0unjmax, which is the maximum value of the nonlinear residue jL0unj in Eq.
(2.1). In the error diagrams of the Newton-CG method, the error of the numerical solution un after each Newton’s iteration
is plotted against the total number of CG iterations across all preceding Newton’s iterations (NOT against the number of New-
ton iterations). This total number of CG iterations in the Newton-CG method will be compared with the number of iterations
in the other methods (AITEM, Petviashvili and MSOM). These iteration numbers are valuable information since they are com-
puter-independent and software-independent. In addition, these numbers do not change much if finer mesh grids are used.
However, one should bear in mind that the computational costs of one iteration in these different methods are different. Spe-
cifically, when spatial derivatives and M�1 are computed by the Fourier-pseudospectral method, as is done in all examples of
this paper, then the ratios of one iteration’s computational costs for the Newton-CG method, the Petviashvili method, the
AITEM and the MSOM are approximately 1:1:1.3:3 (here one iteration in the Newton-CG method refers to one CG iteration).
In other words, the costs of one CG iteration and one Petviashvili iteration are about the same, one AITEM iteration costs 30%
more, and one MSOM iteration costs three times as much. These computational costs can be understood by counting the
number of Fourier transforms and inverse Fourier transforms which often dominate the computations. Thus the number
of iterations may not accurately reflect the efficiency of a method. A more sensible way to compare the efficiencies of dif-
ferent methods is to compare the CPU times they use for the same solution accuracy. This is also done in all examples of this
paper. In such comparisons, all computations are performed in MATLAB (version 7.0) on a personal computer (with AMD
Athlon processor, 2.4 GHz speed and 4 Gb RAM).

All examples below will show that the Newton-CG method is very robust and always converges (we have never encoun-
tered an exception). In addition, this method is faster than its peers, often by orders of magnitude. Even though a rigorous
proof of its fast convergence is hardly possible, a heuristic understanding is still available. For a matrix equation Ax ¼ b, if the
matrix A is symmetric and positive-definite, then the error of the preconditioned conjugate gradient method (by a precon-
ditioning matrix M) decays at least by a factor of Rcg ¼ ð

ffiffiffiffi
j
p
� 1Þ=ð

ffiffiffiffi
j
p
þ 1Þ with each iteration [16]. Here j is the spectral

condition number of the matrix M�1A, i.e. j ¼ jkmax=kminj, where kmax and kmin are the largest and smallest non-zero eigen-
values of M�1A (in magnitude). From this relation we see that the number of iterations to reach a certain relative reduction
in the error is roughly proportional to

ffiffiffiffi
j
p

. If we extrapolate this result to the CG iterations in the Newton-CG method, then
we can expect that the number of CG iterations to reach a certain error reduction is roughly proportional to

ffiffiffiffi
j
p

, where j is
the spectral condition number of the operator M�1L1. For the AITEM and the Petviashvili method, however, the error decays
by a factor of R ¼ ðj� 1Þ=ðjþ 1Þ, where j is the same as above [8,12]. Thus the numbers of AITEM and Petviashvili iterations
to reach a certain error reduction are roughly proportional to j. For the MSOM, the error decays more erratically, but this
decay is roughly at the rate of Rm ¼ ðj2 � 1Þ=ðj2 þ 1Þ, since the spectral condition number of the squared operator in the
MSOM is roughly j2, where j is the same as above [9]. Thus the number of MSOM iterations to reach a certain error reduc-
tion is roughly proportional to j2. In most solitary wave computations, j is moderate or large, thus the Newton-CG method
converges faster than the AITEM, MSOM and the Petviashvili method. In situations where the spectral condition number of
M�1L1 is very large (such as when the propagation constant lies near the edge of the continuous spectrum), the Newton-CG
method will be much faster than its peers as Examples 3.4 and 3.5 below will show.

Example 3.1 (Ground states of the 2D NLS equation). The first example we consider is the computation of ground states in the
familiar two-dimensional NLS equation
iUt þ Uxx þ Uyy þ jUj2U ¼ 0: ð3:5Þ
Ground states of this equation are of the form Uðx; y; tÞ ¼ uðx; yÞeilt , where uðx; yÞ is a positive function satisfying the equation
uxx þ uyy þ u3 ¼ lu: ð3:6Þ
The linearization operator for this equation is
L1 ¼ @xx þ @yy þ 3u2 � l:
At l ¼ 1, the ground state is shown in Fig. 3.1(a). To compute this ground state, we have applied three iteration methods: the
Petviashvili method, the AITEM, and the Newton-CG method. For both the AITEM and the Newton-CG method, the acceler-
ation operator M is taken as
M ¼ c � @xx � @yy; ð3:7Þ
where c is a positive constant. The computational domain is taken as a square of �15 < x; y < 15, discretized by 256 points
along each dimension. Spatial derivatives as well as M�1 are computed by the Fourier-pseudospectral method, thus the spa-
tial accuracy of our computations is spectral [1,31]. The initial condition is taken as
u0ðx; yÞ ¼ 2:2e�x2�y2
: ð3:8Þ

−5
0

5
−5

0
5

0

1

2

(a)

xy

u

0 10 20 30 40 50

10−10

10−5

100

number of iterations

er
ro

r

Petviashvili

AITEM
CG

(b)

0 1 2 3 4

10−10

10−5

100

time (seconds)

er
ro

r

Petviashvili

CG

AITEM

(c)

0 1 2 3
0

10

20

30

40

50

60

c

nu
m

be
r o

f i
te

ra
tio

ns (d)

Fig. 3.1. (a) The ground state in the 2D NLS Eq. (3.6) with l ¼ 1; (b, c) error diagrams of the Newton-CG method (marked by ‘CG’), the Petviashvili method
and the AITEM versus the number of iterations (b) and the CPU time (c); in the Newton-CG method, the error of the numerical solution after each Newton’s
iteration is plotted against the total number of CG iterations (b) or time (c) across all preceding Newton’s iterations (each circle represents a Newton’s
iteration point); these conventions apply to all figures in this paper; (d) dependence of the total number of CG iterations on the acceleration parameter c in
the Newton-CG method (solution accuracy set at 10�10Þ.

J. Yang / Journal of Computational Physics 228 (2009) 7007–7024 7013
In the AITEM, the optimal scheme parameters are copt ¼ 1 and Dtopt ¼ 1:3; and in the Newton-CG method, the optimal c
parameter is copt ¼ 1 (for this example, copt ¼ l in general in both methods). At these optimal scheme parameters, the error
diagrams versus the number of iterations are displayed in Fig. 3.1(b). As has been mentioned before, the error diagram of the
Newton-CG method plots the error of the numerical solution after each Newton’s iteration against the total number of pre-
ceding CG iterations (by circle points), which is the case for all figures in this paper. These circle points are connected by
straight lines for illustration purpose. One can see that for an accuracy below 10�10, the Newton-CG method takes six Newton
iterations. Each Newton iteration contains five CG iterations on average, which gives a total of 30 CG iterations. This total
number of CG iterations is slightly more than the number of AITEM iterations, but much less than the number of Petviashvili
iterations. To compare the speeds of these methods, the error diagrams versus the CPU times are displayed in Fig. 3.1(c). One
can see that for an accuracy below 10�10, the Newton-CG method takes about 2.4 s, which is faster than both the AITEM and
Petviashvili methods. Thus, the Newton-CG method delivers the best performance among its peers on this simple example.
To test the sensitivity of the Newton-CG method to the acceleration parameter c, we have tried different c values and re-
corded the number of CG iterations the Newton-CG method takes to reach accuracy below 10�10, and the results are shown
in Fig. 3.1(d). One can see that the efficiency of the Newton-CG method is not very sensitive to the c value as long as c is not
very small. This insensitivity to pre-conditioning parameters is another advantage of the Newton-CG method.

Example 3.2 (Vortex solitons of the 2D NLS equation). The second example we consider is the computation of vortex solitons
in the above 2D NLS Eq. (3.5). These vortex solitons are Uðx; y; tÞ ¼ uðx; yÞeilt , where uðx; yÞ is a complex function of the form
f ðrÞeih, and ðr; hÞ is the polar coordinate of the ðx; yÞ plane. These solitons are the excited states of the 2D NLS equation. At
l ¼ 1, this vortex solution is shown in Fig. 3.2(a). For these excited states, the Petviashvili method and the AITEM do not
converge. Below we apply the Newton-CG method to compute this solution, and compare its performance with that of
the MSOM. For this purpose, we express u ¼ v þ iw, where v and w are the real and imaginary parts of the function u.
The equations for v and w are
vxx þ vyy þ ðv2 þw2Þv ¼ lv ; ð3:9Þ
wxx þwyy þ ðv2 þw2Þw ¼ lw: ð3:10Þ
In both the Newton-CG and MSOM methods, we take the acceleration operator M as
M ¼ ðc � @xx � @yyÞ diag ð1;1Þ; ð3:11Þ

−5
0

5
−5

0
5

0

1

2

(a)

xy

|u|

0 100 200 300 400

10−10

10−5

100

number of iterations

er
ro

r

MSOM

CG

(b)

0 50 100

10−10

10−5

100

time (seconds)

er
ro

r

CG
MSOM

(c)

0 1 2 3 4
0

50

100

150

c

nu
m

be
r o

f i
te

ra
tio

ns (d)

Fig. 3.2. (a) The vortex soliton juðx; yÞj in the 2D NLS Eq. (3.5) with l ¼ 1; (b, c) error diagrams of the Newton-CG method (marked by ‘CG’) and the MSOM
versus the number of iterations (b) and the CPU time (c); each circle in the Newton-CG diagram represents a Newton’s iteration point; (d) dependence of the
total number of CG iterations on the acceleration parameter c in the Newton-CG method (solution accuracy set at 10�10).

7014 J. Yang / Journal of Computational Physics 228 (2009) 7007–7024
where c is a positive parameter. The computational domain is taken as a square of �15 < x; y < 15, discretized by 256 points
along each dimension. The initial condition is taken as
u0ðx; yÞ ¼ 2:5r sech r eih: ð3:12Þ
In the Newton-CG method, the optimal acceleration parameter c is copt ¼ l ¼ 1; in the MSOM, the optimal scheme param-
eters are copt ¼ 2:5 and Dtopt ¼ 1:2. At these optimal scheme parameters, the error diagrams of these two methods versus the
number of iterations and the CPU time are displayed in Fig. 3.2(b and c), respectively. One can see from these diagrams that
for the computation of this vortex soliton, the Newton-CG method is much faster than the MSOM. Specifically, to reach an
accuracy below 10�10, the Newton-CG method takes eight Newton iterations, which contain a total of 65 CG iterations. This
total number of CG iterations is more than five times less than the number of MSOM iterations. In terms of the CPU time, the
Newton-CG method takes under 8 s to reach accuracy 10�10, which is more than 15 times faster than the MSOM (this speed
difference is expected since one MSOM iteration costs about three times as much as one CG iteration, see earlier text in this
section). Thus for this vortex soliton, the Newton-CG method is much more efficient than its peer method MSOM by orders of
magnitude. To test the sensitivity of the Newton-CG method to the acceleration parameter c in this example, we have taken
various c values and recorded the total number of CG iterations to reach solution accuracy 10�10, and the results are shown in
Fig. 3.2(d). One can see that for this excited state, the Newton-CG method is not sensitive to the acceleration parameter c
either, just like Example 3.1.

Example 3.3 (Depression and elevation waves in the fifth-order KdV equation). Our next example is the fifth-order KdV
equation
Ut þ 6UUx þ 2Uxxx þ Uxxxxx ¼ 0; ð3:13Þ
which is a normalized model equation for small-amplitude gravity-capillary waves on water of finite depth when the Bond
number is close to 1/3 [32]. Here Uðx; tÞ is the non-dimensionalized free-surface elevation. This equation admits depression
and elevation waves with decaying oscillatory tails which bifurcate from the point of minimum phase speed. These waves
are of the form Uðx; tÞ ¼ uðx� vtÞ, where v < �1 is the wave’s speed, and the function uðxÞ satisfies the equation
uxxxx þ 2uxx þ 3u2 ¼ vu; ð3:14Þ
as well as the boundary conditions uðxÞ ! 0 as x! �1. At v ¼ �1:2, the corresponding depression and elevation waves are
shown in Fig. 3.3(a and b), respectively. Now we compute these waves by the Newton-CG